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ABSTRACT: We seek to improve on traditional methods for the numerical simulation of reaction-diffusion equations by employing
two-grid and operator splitting techniques. Two-grid methods and operator splitting methods can be used to help reduce computational
cost and provide accurate, stable simulations.

Two-Grid Methods

First motivated by [3], two-grid methods provide a more efficient solution process
for nonlinear partial differential equations on a mesh of size h. The method con-
sists of two steps: first solving the original nonlinear problem on a much coarser
grid of size H , then solving a linearized version of the problem on the original fine
mesh. The coarse-grid solution will capture the nonlinear behavior of the prob-
lem, and the fine grid solve will refine the solution on a precise scale, resulting in
a faster overall solution process. The theoretical application of this method to (1)
was presented in [1].

Implementation

To incorporate the two-grid method into a time integration scheme, at each time
step we use the following algorithm:
•On the coarse grid, find uH that satisfies

∂uH

∂t
= ∇ · (K(uH)∇uH) + r(x, uH)

• Interpoate uH to the fine grid
•On the fine grid, find uh that satisfies

∂uh

∂t
= ∇ · [Ku(uH)∇uH(uh − uH) + K(uH)∇uh] + ru(x, uH)(uh − uH)

Our Work

We have implemented the two-grid method for (1) within the context of a second-
order backward differentiation formula implicit time-stepping scheme. The size
of the nonlinear problem is significantly reduced, and the method has shown to
preserve the order of accuracy of the standard nonlinear solver approach. We are
focusing our investigations on the relationship between the coarse and fine grid
sizes as well as alternate formulations of the two-grid algorithm, which include
additional fine grid linear corrections or possibly higher-order coarse grid linear
corrections.
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Step 1: Solution to nonlinear coarse grid problem
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Step 2: Coarse grid solution interpolated to fine grid
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Step 3: Solution to linear fine grid problem
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Introduction

The general model for a reaction-diffusion system is given by
∂u

∂t
= ∇ · (K(u)∇u) + r(x, u) in Ω × (0, T ) . (1)

with boundary conditions
u = gD on ΓD and − K(u)∇u = gN on ΓN

where ∂Ω = ΓD ∪ ΓN and initial condition
u(x, 0) = u

0 in Ω.

Applications of this model include energy transport in stellar and laser fusion,
porous media flow, biogeochemical phenomena, as well as many others.

Solution Approach

Using (1) and the lowest-order Raviart-Thomas-Nedéléc spaces on rectangular
boxes and particular choices of quadrature rules, we arrive at a cell-centered finite
difference (CCFD) discretization of ut. This discretization is second-order accurate
in space (O(h2)). We then must solve the system of ordinary differential equations

du

dt
= f(t,u). (2)

To integrate the solution with respect to time, we use implicit backward differen-
tiation formulas (BDF). Thus, in order to progress from time tn to time tn+1, we
must solve a large system of nonlinear equations. Two-Grid methods and Operator
Splitting methods give us different ways to tackle problem (2).

Conclusions and Future Work

•Two-grid methods have shown numerically to have the same accuracy as the stan-
dard approach with less computational time spent in nonlinear solver routines.

•Optimimzed two-grid code should result in an overall faster solution process.
•Alternate formulations of the two-grid algorithm are being tested to determine if

they provide even better performance, as well as investigations into the relation-
ship between the fine and coarse grid sizes.

•Operator splitting methods show promise in being able to solve nonlinear
reaction-diffusion problems efficiently.

•Appropriate implicit schemes will be constructed to meet the specifications for
different splitting methods without the loss of accuracy.
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Operator Splitting Methods

Operator splitting or fractional step methods seek to simplify the nonlinear system
formed by (2) by separating the reaction and diffusion operators in (1):

du

dt
= f(t,u) = fD(t,u) + fR(t,u) (3)

Each operator is then integrated in time individually (with temporal integrators
designed for each) and the result from each fractional step is used as initial data
for the subsequent fractional step. In operator notation, with D representing the
diffusion operator and R representing the reaction operator, to find un+1 given un

and tn+1 = tn + ∆t, a simple first-order splitting scheme can be written as
un+1 = D∆tR∆tun.

Example: Strang Splitting

Strang splitting [2] is a second-order accurate in time splitting method that, over
one external time step, applies one operator for a half time step, then the other
operator for a full time step, then finally the first operator for the remaining half
step. If we apply the reaction operator first, Strang splitting (RDR) applied to (3)
over one time step consists of solving:

du∗

dt
= fR(t,u∗) on [0, ∆t/2], u

∗(0) = u(tn)

du∗∗

dt
= fD(t,u∗∗) on [0, ∆t], u

∗∗(0) = u
∗(∆t/2)

du∗∗∗

dt
= fR(t,u∗∗∗) on [∆t/2, ∆t], u

∗∗∗(0) = u
∗∗(∆t)

Our Work

We are implementing various operator splitting schemes to advance the solution of
(3) at each timestep for the problem (1). Unlike most previous applications of oper-
ator splitting methods that use combinations of implicit and explicit methods, we
are interested in using fully implicit methods (such as specially-constructed back-
ward differentiation formulas) for use in each fractional step. Preliminary numer-
ical results show that for sample problems the splitting methods are very close in
accuracy to CVODE, an implicit variable time step stiff ODE solver developed at
LLNL, as well as the standard BDF method.
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Goal:
To evaluate the relative

accuracy and cost benefit of
operator splitting and fully

implicit time integration
schemes.
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